核心架构与特性
系统架构概览
LLMESH 采用分层的去中心化架构,确保网络的可扩展性、安全性和高可用性。
┌─────────────────────────────────────┐
│ 应用层 (Application Layer) │
│ Web UI │ API Gateway │ Mobile App │
├─────────────────────────────────────┤
│ 服务层 (Service Layer) │
│ 路由服务 │ 负载均衡 │ 模型管理 │
├─────────────────────────────────────┤
│ 网络层 (Network Layer) │
│ P2P 协议 │ 消息传递 │ 节点发现 │
├─────────────────────────────────────┤
│ 存储层 (Storage Layer) │
│ 模型存储 │ 元数据 │ 缓存管理 │
└─────────────────────────────────────┘
核心特性
🌐 真正的 P2P 架构
LLMESH 实现了完全去中心化的点对点架构,每个节点都具有以下能力:
模型托管:运行和提供 LLM 推理服务
请求路由:智能转发用户请求到最优节点
网络维护:参与网络拓扑的维护和优化
节点类型
class NodeType(Enum):
FULL_NODE = "full" # 完整节点:提供所有服务
LIGHT_NODE = "light" # 轻量节点:仅路由和缓存
COMPUTE_NODE = "compute" # 计算节点:专注模型推理
STORAGE_NODE = "storage" # 存储节点:专注模型存储
🔄 自愈网络机制
网络具备强大的自愈能力,能够自动应对各种故障情况:
故障检测算法
class HealthChecker:
def __init__(self, check_interval=30):
self.check_interval = check_interval
self.failed_nodes = set()
async def monitor_network(self):
"""持续监控网络健康状态"""
while True:
await self.check_all_peers()
await asyncio.sleep(self.check_interval)
async def check_node_health(self, node_id):
"""检查单个节点健康状态"""
try:
response = await self.ping_node(node_id, timeout=5)
if response.status == "healthy":
self.failed_nodes.discard(node_id)
return True
else:
self.failed_nodes.add(node_id)
await self.trigger_rerouting(node_id)
return False
except TimeoutError:
self.failed_nodes.add(node_id)
await self.trigger_rerouting(node_id)
return False
自动重路由机制
class RoutingManager:
def __init__(self):
self.routing_table = {}
self.backup_routes = {}
async def find_alternative_route(self, failed_node, target_service):
"""寻找替代路由"""
candidates = []
for node_id, node_info in self.routing_table.items():
if (node_id != failed_node
and target_service in node_info.services
and node_info.load < 0.8):
candidates.append((node_id, node_info.latency))
# 按延迟排序,选择最优节点
candidates.sort(key=lambda x: x[1])
return candidates[0][0] if candidates else None
⚖️ 动态负载均衡
LLMESH 实现了智能的负载均衡机制,确保请求能够高效分发:
负载均衡算法
class LoadBalancer:
def __init__(self):
self.nodes = {}
self.request_history = []
def select_node(self, request_type, model_name):
"""基于多因素选择最优节点"""
eligible_nodes = self.filter_capable_nodes(request_type, model_name)
if not eligible_nodes:
raise NoAvailableNodeError()
# 综合评分算法
best_node = None
best_score = float('inf')
for node in eligible_nodes:
score = self.calculate_node_score(node)
if score < best_score:
best_score = score
best_node = node
return best_node
def calculate_node_score(self, node):
"""计算节点综合评分(越低越好)"""
latency_weight = 0.4
load_weight = 0.3
cost_weight = 0.2
reputation_weight = 0.1
score = (
node.avg_latency * latency_weight +
node.current_load * load_weight +
node.service_cost * cost_weight +
(1 - node.reputation_score) * reputation_weight
)
return score
🔒 隐私优先设计
所有通信都采用端到端加密,确保用户数据安全:
加密通信实现
import cryptography
from cryptography.fernet import Fernet
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
class SecureCommunication:
def __init__(self):
self.private_key = self.generate_private_key()
self.public_key = self.private_key.public_key()
def encrypt_message(self, message: str, recipient_public_key) -> bytes:
"""加密消息"""
# 生成会话密钥
session_key = Fernet.generate_key()
fernet = Fernet(session_key)
# 加密消息内容
encrypted_message = fernet.encrypt(message.encode())
# 使用接收方公钥加密会话密钥
encrypted_session_key = recipient_public_key.encrypt(
session_key,
padding.OAEP(
mgf=padding.MGF1(algorithm=hashes.SHA256()),
algorithm=hashes.SHA256(),
label=None
)
)
return {
'encrypted_session_key': encrypted_session_key,
'encrypted_message': encrypted_message
}
def decrypt_message(self, encrypted_data: dict) -> str:
"""解密消息"""
# 解密会话密钥
session_key = self.private_key.decrypt(
encrypted_data['encrypted_session_key'],
padding.OAEP(
mgf=padding.MGF1(algorithm=hashes.SHA256()),
algorithm=hashes.SHA256(),
label=None
)
)
# 解密消息内容
fernet = Fernet(session_key)
decrypted_message = fernet.decrypt(encrypted_data['encrypted_message'])
return decrypted_message.decode()
网络协议
节点发现协议
class NodeDiscovery:
def __init__(self, node_id):
self.node_id = node_id
self.known_peers = set()
self.discovery_interval = 60
async def bootstrap(self, bootstrap_nodes):
"""从引导节点开始发现网络"""
for bootstrap_node in bootstrap_nodes:
try:
peers = await self.request_peer_list(bootstrap_node)
self.known_peers.update(peers)
except ConnectionError:
continue
async def periodic_discovery(self):
"""定期发现新节点"""
while True:
await self.discover_new_peers()
await asyncio.sleep(self.discovery_interval)
async def discover_new_peers(self):
"""通过现有节点发现新节点"""
for peer in list(self.known_peers):
try:
new_peers = await self.request_peer_list(peer)
self.known_peers.update(new_peers)
except Exception:
self.known_peers.discard(peer)
消息传递协议
class MessageProtocol:
def __init__(self):
self.message_handlers = {}
self.pending_responses = {}
def register_handler(self, message_type, handler):
"""注册消息处理器"""
self.message_handlers[message_type] = handler
async def send_request(self, target_node, message_type, payload):
"""发送请求消息"""
message_id = self.generate_message_id()
message = {
'id': message_id,
'type': message_type,
'payload': payload,
'timestamp': time.time(),
'sender': self.node_id
}
await self.send_message(target_node, message)
# 等待响应
response = await self.wait_for_response(message_id, timeout=30)
return response
async def handle_incoming_message(self, message):
"""处理收到的消息"""
message_type = message.get('type')
if message_type in self.message_handlers:
handler = self.message_handlers[message_type]
response = await handler(message)
if response:
await self.send_response(message, response)
性能优化
缓存机制
class ModelCache:
def __init__(self, max_size=1000):
self.cache = {}
self.max_size = max_size
self.access_times = {}
def get(self, cache_key):
"""获取缓存结果"""
if cache_key in self.cache:
self.access_times[cache_key] = time.time()
return self.cache[cache_key]
return None
def set(self, cache_key, result):
"""设置缓存结果"""
if len(self.cache) >= self.max_size:
self.evict_oldest()
self.cache[cache_key] = result
self.access_times[cache_key] = time.time()
def evict_oldest(self):
"""移除最久未使用的缓存项"""
oldest_key = min(self.access_times.keys(),
key=lambda k: self.access_times[k])
del self.cache[oldest_key]
del self.access_times[oldest_key]
通过这些核心特性和架构设计,LLMESH 网络能够提供高可用、高性能、安全可靠的去中心化 AI 服务。
Last updated