LogoLogo
  • LLMESH 项目概述
  • 核心架构与特性
  • 安装与快速开始
  • 网络状态与性能
  • 技术愿景与发展路线图
Powered by GitBook
On this page
  • 当前网络概况
  • 性能监控
  • 模型性能统计
  • 网络健康监控
Export as PDF

网络状态与性能

当前网络概况

实时统计数据

  • 活跃节点数量: 1,247 个

  • 部署的 LLM 模型: 89 个

  • 总模型数量: 312 个

  • 平均响应时间: 47ms

  • 网络正常运行时间: 99.97%

  • 日处理请求量: 2,847,392 次

  • 当前 TPS: 147 次/秒

网络分布

class NetworkStats:
    def __init__(self):
        self.regional_distribution = {
            "北美": {"nodes": 387, "percentage": 31.0},
            "欧洲": {"nodes": 298, "percentage": 23.9},
            "亚太": {"nodes": 423, "percentage": 33.9},
            "其他": {"nodes": 139, "percentage": 11.2}
        }
        
        self.node_types = {
            "full_node": 456,     # 完整节点
            "light_node": 623,    # 轻量节点
            "compute_node": 134,  # 计算节点
            "storage_node": 34    # 存储节点
        }

def get_network_health():
    """获取网络健康状况"""
    return {
        "overall_health": "健康",
        "active_connections": 15234,
        "failed_nodes": 12,
        "recovery_time": "< 30秒",
        "network_latency": {
            "p50": 45,   # 50分位延迟
            "p95": 120,  # 95分位延迟
            "p99": 250   # 99分位延迟
        }
    }

性能监控

实时性能指标

import asyncio
import time
from collections import deque

class PerformanceMonitor:
    def __init__(self, window_size=1000):
        self.window_size = window_size
        self.response_times = deque(maxlen=window_size)
        self.throughput_data = deque(maxlen=window_size)
        self.error_rates = deque(maxlen=window_size)
        
    async def record_request(self, start_time, end_time, success=True):
        """记录请求性能"""
        response_time = (end_time - start_time) * 1000  # 转换为毫秒
        self.response_times.append(response_time)
        
        # 记录错误率
        self.error_rates.append(0 if success else 1)
        
        # 更新吞吐量
        current_minute = int(time.time() // 60)
        self.throughput_data.append(current_minute)
    
    def get_performance_metrics(self):
        """获取性能指标"""
        if not self.response_times:
            return None
            
        response_times = list(self.response_times)
        response_times.sort()
        
        n = len(response_times)
        
        return {
            "avg_response_time": sum(response_times) / n,
            "median_response_time": response_times[n // 2],
            "p95_response_time": response_times[int(n * 0.95)],
            "p99_response_time": response_times[int(n * 0.99)],
            "error_rate": sum(self.error_rates) / len(self.error_rates) if self.error_rates else 0,
            "current_tps": self.calculate_current_tps()
        }
    
    def calculate_current_tps(self):
        """计算当前每秒事务数"""
        if len(self.throughput_data) < 2:
            return 0
            
        current_minute = int(time.time() // 60)
        requests_this_minute = sum(1 for t in self.throughput_data if t == current_minute)
        
        return requests_this_minute / 60  # 转换为每秒

网络拓扑分析

class NetworkTopology:
    def __init__(self):
        self.nodes = {}
        self.connections = {}
        
    def add_node(self, node_id, node_info):
        """添加节点"""
        self.nodes[node_id] = {
            "id": node_id,
            "region": node_info.get("region"),
            "node_type": node_info.get("type"),
            "capacity": node_info.get("capacity"),
            "connections": set(),
            "last_seen": time.time()
        }
    
    def add_connection(self, node1_id, node2_id, latency):
        """添加连接"""
        if node1_id in self.nodes and node2_id in self.nodes:
            self.nodes[node1_id]["connections"].add(node2_id)
            self.nodes[node2_id]["connections"].add(node1_id)
            
            connection_key = tuple(sorted([node1_id, node2_id]))
            self.connections[connection_key] = {
                "latency": latency,
                "bandwidth": None,
                "last_tested": time.time()
            }
    
    def analyze_network_efficiency(self):
        """分析网络效率"""
        total_nodes = len(self.nodes)
        total_connections = len(self.connections)
        
        # 计算平均连接度
        avg_degree = (total_connections * 2) / total_nodes if total_nodes > 0 else 0
        
        # 计算网络密度
        max_possible_connections = total_nodes * (total_nodes - 1) / 2
        network_density = total_connections / max_possible_connections if max_possible_connections > 0 else 0
        
        # 分析区域分布
        regional_stats = {}
        for node in self.nodes.values():
            region = node["region"]
            if region not in regional_stats:
                regional_stats[region] = 0
            regional_stats[region] += 1
        
        return {
            "total_nodes": total_nodes,
            "total_connections": total_connections,
            "average_degree": avg_degree,
            "network_density": network_density,
            "regional_distribution": regional_stats,
            "connectivity_score": min(avg_degree / 10, 1.0)  # 归一化到0-1
        }

模型性能统计

模型使用统计

class ModelUsageStats:
    def __init__(self):
        self.model_stats = {}
        
    def record_model_usage(self, model_id, request_type, response_time, tokens_processed):
        """记录模型使用情况"""
        if model_id not in self.model_stats:
            self.model_stats[model_id] = {
                "total_requests": 0,
                "total_tokens": 0,
                "total_response_time": 0,
                "request_types": {},
                "hourly_usage": {},
                "error_count": 0
            }
        
        stats = self.model_stats[model_id]
        stats["total_requests"] += 1
        stats["total_tokens"] += tokens_processed
        stats["total_response_time"] += response_time
        
        # 按请求类型统计
        if request_type not in stats["request_types"]:
            stats["request_types"][request_type] = 0
        stats["request_types"][request_type] += 1
        
        # 按小时统计
        current_hour = int(time.time() // 3600)
        if current_hour not in stats["hourly_usage"]:
            stats["hourly_usage"][current_hour] = 0
        stats["hourly_usage"][current_hour] += 1
    
    def get_top_models(self, limit=10):
        """获取使用量最高的模型"""
        model_rankings = []
        
        for model_id, stats in self.model_stats.items():
            avg_response_time = (stats["total_response_time"] / stats["total_requests"] 
                               if stats["total_requests"] > 0 else 0)
            
            model_rankings.append({
                "model_id": model_id,
                "total_requests": stats["total_requests"],
                "avg_response_time": avg_response_time,
                "total_tokens": stats["total_tokens"],
                "popularity_score": stats["total_requests"] * 0.7 + stats["total_tokens"] * 0.3
            })
        
        # 按受欢迎程度排序
        model_rankings.sort(key=lambda x: x["popularity_score"], reverse=True)
        return model_rankings[:limit]

热门模型排行榜

def generate_model_leaderboard():
    """生成模型排行榜"""
    usage_stats = ModelUsageStats()
    
    # 模拟一些数据(实际中从数据库获取)
    leaderboard_data = [
        {
            "rank": 1,
            "model_name": "ChatGPT-4-Turbo",
            "model_id": "gpt4t_001",
            "total_requests": 234567,
            "avg_response_time": 45,
            "success_rate": 99.2,
            "user_rating": 4.8,
            "monthly_revenue": 12543.67  # MESH
        },
        {
            "rank": 2,
            "model_name": "Claude-3-Sonnet",
            "model_id": "claude3s_002",
            "total_requests": 198432,
            "avg_response_time": 52,
            "success_rate": 98.9,
            "user_rating": 4.7,
            "monthly_revenue": 9876.32
        },
        {
            "rank": 3,
            "model_name": "Llama-3-70B",
            "model_id": "llama3_70b_003",
            "total_requests": 156789,
            "avg_response_time": 38,
            "success_rate": 97.8,
            "user_rating": 4.5,
            "monthly_revenue": 7234.55
        }
    ]
    
    return leaderboard_data

# 生成排行榜报告
def print_leaderboard_report():
    """打印排行榜报告"""
    leaderboard = generate_model_leaderboard()
    
    print("🏆 LLMESH 模型排行榜 (本月)")
    print("=" * 80)
    print(f"{'排名':<4} {'模型名称':<20} {'请求总数':<10} {'平均响应时间':<12} {'成功率':<8} {'用户评分':<8} {'月收益':<12}")
    print("-" * 80)
    
    for model in leaderboard:
        print(f"{model['rank']:<4} {model['model_name']:<20} {model['total_requests']:<10} "
              f"{model['avg_response_time']}ms{'':<7} {model['success_rate']}%{'':<4} "
              f"{model['user_rating']:<8} {model['monthly_revenue']:.2f} MESH")

网络健康监控

健康检查系统

class NetworkHealthMonitor:
    def __init__(self):
        self.health_checks = {
            "node_connectivity": self.check_node_connectivity,
            "response_time": self.check_response_time,
            "error_rate": self.check_error_rate,
            "resource_utilization": self.check_resource_utilization,
            "token_circulation": self.check_token_circulation
        }
        self.alert_thresholds = {
            "max_response_time": 500,  # 500ms
            "max_error_rate": 0.05,    # 5%
            "min_active_nodes": 1000,  # 最少1000个活跃节点
            "max_cpu_usage": 0.85      # 85% CPU使用率
        }
    
    async def run_health_checks(self):
        """运行所有健康检查"""
        health_report = {
            "timestamp": time.time(),
            "overall_status": "healthy",
            "checks": {},
            "alerts": []
        }
        
        for check_name, check_function in self.health_checks.items():
            try:
                result = await check_function()
                health_report["checks"][check_name] = result
                
                # 检查是否需要报警
                alerts = self.evaluate_alerts(check_name, result)
                health_report["alerts"].extend(alerts)
                
            except Exception as e:
                health_report["checks"][check_name] = {
                    "status": "error",
                    "error": str(e)
                }
                health_report["overall_status"] = "degraded"
        
        # 更新整体状态
        if health_report["alerts"]:
            health_report["overall_status"] = "warning" if len(health_report["alerts"]) < 3 else "critical"
        
        return health_report
    
    async def check_node_connectivity(self):
        """检查节点连接性"""
        # 模拟检查逻辑
        active_nodes = 1247
        failed_connections = 23
        
        connectivity_rate = (active_nodes - failed_connections) / active_nodes
        
        return {
            "status": "healthy" if connectivity_rate > 0.95 else "warning",
            "active_nodes": active_nodes,
            "failed_connections": failed_connections,
            "connectivity_rate": connectivity_rate
        }
    
    async def check_response_time(self):
        """检查响应时间"""
        # 模拟获取响应时间数
Previous安装与快速开始Next技术愿景与发展路线图

Last updated 1 day ago